• Виктор
  • Статьи
  • 3 мин. чтения

Проблемы применения колтюбинговых технологий

В ряде случаев при эксплуатации скважин на шельфе колтюбинговые технологии являются единственными, способными решать возникающие проблемы. Какие решения оказываются наиболее рациональными?






В ряде случаев при эксплуатации скважин на шельфе колтюбинговые технологии являются единственными, способными решать возникающие проблемы. Такими, в частности, является промывка скважин, исследование скважин, выполнение операций капитального ремонта. Все это обусловлено тем, что геометрия стволов скважин, пробуренных на шельфе, характеризуется значительными длинами горизонтальных участков. Это затрудняет проникновение инструмента к забою скважины и на удаленные участки. Какие решения оказываются наиболее рациональными?

Опыт эксплуатации скважин на Севере показывает, что в начальный период при работе в режиме фонтанирования и высоком пластовом давлении идет интенсивный вынос проникающих в полость скважины воды, конденсата и песка вместе с пластовой жидкостью или газом. При этом глушения скважины не происходит, пока скорость восходящего потока газа превышает скорость осаждения частиц. Как только это соотношение нарушается, то и песок и жидкость (в газовых скважинах) начинают падать на забой, засыпают перфорационные отверстия и постепенно глушат скважину.

Опыт проведения капитальных ремонтов показывает, что выполнение очистки забоя от песка с помощью традиционных технологий, включающих глушение скважины, спуск колонны промывочных труб, собственно промывку, вызов притока, удаление колонны занимает 3 – 4 недели. При использовании колтюбинговых технологий, не требующих глушения и вызова притока время выполнения работ составляет максимум 3 – 4 дня. Кроме того исключаются осложнения и повышается уровень безопасности проведения работ, поскольку исключаются спуско-подъемные операции колонны НКТ, что очень важно при выполнении работ на шельфе. Исключение этих операций особенно актуально, поскольку размеры приустьевых площадок ограничены, а расстояния между устьями скважин малы.

Компактность колонн гибких труб, намотанных на барабаны, позволяет иметь на каждом кусте скважин набор бунтов различных диаметров, необходимых для выполнения работ различного типа. Это справедливо прежде всего для скважин расположенных на кустах или платформах.

В этом случае колтюбинговый агрегат подземного ремонта состоит из трех блоков: катушка с колонной труб, устьевого оборудования и привода с кабиной управления. Во время выполнения ремонта над устьем скважины устанавливается транспортер колонны гибких труб.

К недостаткам колтюбинга относятся прежде всего высокое гидравлическое сопротивление и низкая изгибная жесткость гибких труб, приводящая к потере устойчивости при появлении сжимающих нагрузок. Нагрузки подобного рода появляются при перемещении гибких труб в горизонтальных участках скважин или при заклинивании колонны.

В основном все элементы колтюбинговых установок выполняются с использованием обьемного гидропривода. Однако опыт эксплуатации в условиях холодного климата показывает, что наличие в рабочей жидкости воды приводит к отказу гидросистемы. Растепление гидропривода в условиях низких температур достаточно трудоемкая операция, поскольку исключить появление воды в гидросистеме реально не представляется возможным.

Спуск колонны гибких труб при проведении промывки или разбуривания сопровождается оседанием песка и появлением дополнительных сил трения, в результате чего колонну заклинивает или происходит потеря ее устойчивости. С начала потеря устойчивости происходит в плоскости, которая по мере увеличения значения критической силы превращается в спираль. Для предотвращения этих явлений используют двухкомпонентные промывочные жидкости на основе воды или легкой нефти с азотом и добавлением ПАВ.

Для анализа ситуаций и оценки вероятности появления потери устойчивости колонн труб, расположенных в горизонтальных участках необходимо знать величину критической силы, при которой это явление возникает. Процесс потери устойчивости сопровождается принятием ее оси криволинейной формы. Будем полагать ее близкой к синусоиде. Моментом потери устойчивости будем полагать ситуацию, при которой гибкая труба деформируясь начинает касаться одновременно в диаметральной плоскости стенки обсадной колонны или стенок скважины в двух или более точек. Т.е. ее ось оказывается вписанной во внутреннее пространство скважины. При этом осевая сила, воздействующая на трубу, создает условия для упрочнения контакта гибкой трубы с поверхностью канала в котором она находится – внутренней поверхностью обсадной трубы или стенки скважины.

Для определения условий возникновения потери устойчивости определим зависимость критической силы Ркр от условий работы гибкой трубы. Найдем ее минимальное значение, при котором происходит плоский изгиб трубы.

Исходя из условий образования упругих деформаций при потере устойчивости определим радиус кривизны оси трубы R исходя из закона Гука при изгибе [1] R = EIx / Mx
, где EIx
жесткость при изгибе, Mx
– крутящий момент, изгибающий трубу. Для рассматриваемого случая величина максимального изгибающего момента в упругой области деформирования будет Mx
= St Wx , где St – предел текучести метериала трубы, до которого деформации трубы будут упругими. (В силу близости значений, примем предел упругости и предел текучести равными). Wx – осевой момент сопротивления трубы изгибу. Эта величина может быть представлена как Wx
= Ix / r, где r – максимальное расстояние от оси трубы до поверхности, т.е. наружный радиус гибкой трубы.

Подставив значение момента, получим R = EIx / St Wx = E r / St .

Основываясь на геометрических соотношениях наружной поверхности синусоиды, ограниченной стенками скважины можно записать, что

L = 2 (2f (R – f))0,5, где L – длина полуволны деформированной оси трубы, f – прогиб наружной поверхности гибкой трубы.

Затем подставив полученное значение длины полуволны L в формулу Эйлера [ 2 ], найдем критическую силу Pкр = п2 EIx /L2
. Подставив все полученные значения в формулу Эйлера можно получить единую формулу для определения критической силы, вызывающей потерю устойчивости гибкой трубы находящейся в стесненных условиях во внутренней полости обсадной трубы. В окончательном виде формула для определения критической силы будет иметь вид

Ркр = п2 EIx / 8f((E r / St ) –f)

Как видно, критическая сила зависит от жесткости трубы и прочностных и деформационных характеристик материала из которого она изготовлена.

Результаты расчетов, выполненных для произвольных условий расположения труб различных диаметров расположенных в скважинах с внутренним диаметром 100 и 200 мм показаны в таб. 1.

Таб.1. Зависимость критической силы при потере устойчивости от диаметра обсадной колонны и диаметра колонны гибких труб.

Диаметр обсадной трубы, мм

Критическая сила, Н при диаметре колонны гибких труб, мм

24

33

35

42

55

60

100

1777

8172

10990

28624

137807

250729

200

331

1316

1705

3857

13466

20461

Наиболее наглядно эта зависимость иллюстрируется графиками на рис.1

Рис. 1

Видно, что увеличение наружного диаметра гибкой трубы приводит к нелинейному росту критической силы. При этом, чем меньше внутренний диаметр скважины, тем меньше склонность трубы к потере устойчивости. Это вполне логично, если проанализировать изменение критической силы при уменьшении диаметра скважины до значения, равного наружному диаметру труб – гибкая труба вообще потеряет склонность к потере устойчивости.

Поскольку применение тяжелого низа с колонной гибких труб не имеет смысла, то перемещение ее на горизонтальных участках возможно за счет «гидравлического» продавливания. При этом давление в колонне гибких труб должно создавать осевое усилие, превышающее критическую силу. Ограничивающим значением этого давления является величина, соответствующая тангенциальным напряжениям разрушающим трубу. Значение давления, обеспечивающего перемещение торца трубы без учета сил трения и преодолевающего только критическую силу приведено в таб.2. Максимальное давление для труб принято равным 40 МПа.

Таб.2 Зависимость давления проталкивания от диаметра обсадной колонны и диаметра колонны гибких труб.

Диаметр обсадной трубы, мм

Давление проталкивания Па при диаметре колонны гибких труб,

24

33

35

42

55

60

100

6,1

14,9

17,9

32,3

92*

138*

200

1,1

2,4

2,8

4,4

8,9

11,3

*значения давлений превышающих прочность тубы

Для выполнения этих операций на конце колонны гибких труб необходимо установить клапан, который запирает канал выхода технологической жидкости из внутренней полости гибких труб. Когда клапан закрыт, то давление жидкости воздействуя на его торец создает усилие выпрямляющее трубу и проталкивающее ее. После проталкивания трубы клапан должен быть открыт и поток жидкости будет использован для выполнения технологических операций (конструкция устройства в настоящем материале не раскрывается).

Анализ полученных результатов показывает, что наиболее рациональной с точки зрения исключения потери устойчивости при перемещении колонны гибких труб является использование максимально возможных диаметров. При этом предпочтительными являются скважины с минимальными диаметрами ствола или колоннами обсадных труб.

Литература

1. Феодосьев В.И. –М,:Изд-во МГТУ им.Н.Э.Баумана, 2004, -592 с.

2. Писаренко Г.С. и др. Справочник по сопротивлению материалов. Киев,: ИЗД-во Наукова думка 1974, 689 с.

3. Вайншток С.М. и др. Подземный ремонт и бурение скважин с
применением гибких труб. –М,: ИЗ-во
Академии горных наук, 1999. – 224с.


Source: https://oaoo.ru/ptps/problemy-primeneniia-koltubingovyh-tehnologii.html

Межтекстовые Отзывы
Посмотреть все комментарии
guest

Методы ВПГ на керогеносодержащих пластах

УДК: 532.546 В данной работе описана математическая модель, позволяющая моделировать процесс ВПГ, применяемый на пластах, содержащих кероген. Путем...

Побеждают только профессионалы

УДК: 622.2 В августе Сибирская Сервисная Компания провела конкурс профессионального мастерства «Лучший по профессии-2022» среди бригад эксплуатационного и...

10 технологий в нефтесервисе

Россия богата углеводородными запасами, но их качество в последние годы неуклонно снижается. Вновь открываемые месторождения становятся все менее...

Под покрытием: антикоррозионная защита для нефтегазового комплекса

Проблема эффективной антикоррозионной защиты является очень актуальной для современных предприятий нефтегазового комплекса.   Фирма  «Индустриальные покрытия»  предлагает широкий ассортимент ЛКМ, позволяющий...

“Нефть на кончике долота”

Качество углеводородных запасов в РФ с каждым годом ухудшается, многие видят в этом стимул для роста российского нефтесервисного...

Возможности для роста: где их находят нефтесервисные компании

Эффективность нефтедобычи, особенно на месторождениях с трудноизвлекаемыми запасами и находящихся в сложных горно-геологических условиях, во многом определяется своевременной...

Термоизолированные трубы для увеличения нефтеотдачи

УДК: 622.276 В статье представлена новая термошахтная технология для повышения эффективности вовлечения запасов высоковязкой нефти, сосредоточенной в сложных...

Интенсификация добычи высоковязкой нефти

УДК: 622.276 Ввод в разработку залежей высоковязкой нефти и обеспечение рентабельных уровней добычи является актуальной задачей для нефтегазодобывающих...

Сибирская Сервисная Компания установила новый отраслевой рекорд суточной проходки

На кустовой площадке № 484 южной части Приобского месторождения (заказчик – ООО «Газпромнефть-Хантос») установлен новый отраслевой рекорд суточной...

На крупнейшей шахте ДНР введена в эксплуатацию новая лава

 © dan-news.ru Новая лава введена в эксплуатацию на шахте «Комсомолец Донбасса» в городе Кировское. «Восемь месяцев на шахте „Комсомолец Донбасса“ строили новую лаву...

В Мурманской области начата отработка богатого пласта редкоземельных руд

 © atomic-energy.ru Начата отработка трёх новых очистных блоков богатой центральной части Аллуайвского месторождения редкоземельных металлов. На гора подняты первые тонны...

Развитие потенциала молодых специалистов – одно из приоритетных направлений работы с персоналом в Сибирской Сервисной Компании

УДК: 622.06 Молодые специалисты ССК принимают участие в научно-технических конференциях, которые традиционно проходят в два этапа. Первый –...

ООО «НОВАТЭК-ТАРКОСАЛЕНЕФТЕГАЗ» и Ямальский филиал АО «ССК» – второй пятилетний план сотрудничества продолжается

В этом году ООО «НОВАТЭК-ТАРКОСАЛЕНЕФТЕГАЗ»  отмечает свое 25-летие. За четверть века градообразующее предприятие города Тарко-Сале внесло колоссальный вклад в...

Факторы успеха: как во время кризиса нарастить обороты и увеличить инвестиции

2020 год поставил перед нефтегазовой отраслью сложные задачи, решение которых потребовало нетривиального подхода, быстрого реагирования на новую ситуацию...

Тиксотропия. Изучение явления на примере нефти восточно-бирлинского месторождения

В статье приведен анализ тиксотропных систем, их классификации. Представлены результаты проведенных авторами экспериментальных исследований по изучению тиксотропных свойств...

Конверсия тяжелой нефти в присутствии компонентов породообразующих минералов при акватермолизе

УДК: 622.276.6 В данной работе проведено физическое моделирование процесса акватермолиза в условиях, близких к пластовым, на образце высоковязкой...

Завершена модернизация Яковлевского ГОКа

 © metalinfo.ru Яковлевский ГОК в Белгородской области (входит в «Северсталь») в 4 квартале 2023 года провёл модернизацию за 230 млн рублей. Завершены...

Нефтеюганский филиал АО «ССК» достиг высоких показателей на проекте ООО «Газпромнефть-Хантос»

УДК: 622.24 «Оценка эффективности деятельности контрагента» ООО «Газпромнефть-Хантос» по итогам второго квартала 2021 года показала для коллектива Нефтеюганского...

«Роснефть» разработала новую технологию гидроразрыва пласта

 © www.rosneft.ru Специалисты научного института «Роснефти» в Уфе совместно со специалистами АНК «Башнефть» (входит в структуру «Роснефти») разработали и внедрили новую технологию комбинированного...

Бурить скважины безопасно и качественно

Сразу две высшие награды вручены буровому мастеру Нефтеюганского филиала АО «Сибирская Сервисная Компания» Александру Дударю в окружном ежегодном...