Интересное
  • Виктор
  • Статьи
  • 7 мин. чтения

Снижение энергоемкости строительства скважин путем применения растворов с улучшенными триботехническими характеристиками

При строительстве наклонно-направленных скважин на пространственно-искривленных участках ствола имеют место большие контактные нагрузки и огромные сопротивления движению бурильной колонны при подъеме. Одно из направлений повышения энергооэффективности бурения таких скважин – снижение трения на границах «металл – металл», «металл – горная порода» и «металл – фильтрационная корка», обеспечить которое можно при использовании буровых растворов с улучшенными триботехническими характеристиками.






Потребление энергии является серьёзным фактором, оказывающим влияние на эксплуатационные расходы на бурение, поскольку на него приходится от 10 до 30% эксплуатационных расходов, поэтому снижение энергозатрат является актуальным направлением исследований и разработок. Особенно это важно при освоении и разработке крупных месторождений, особенно – с трудноизвлекаемыми запасами, к которым относятся проекты бурения скважин с большими отходами от вертикали, в том числе на шельфе Арктики.

При строительстве наклонно направленных скважин, в том числе с горизонтальным окончанием, является одним из направлений повышения нефтеотдачи пласта за счет увеличения зоны дренирования. Данная проблема особенно остро встаёт при бурении с использованием роторных управляемых систем (РУС). Применение РУС подразумевает вращение бурильной колонны по всей её длине, что повышает износ бурового инструмента. А применение смазывающих агентов значительно повышает технико-экономические характеристики данных систем [1-3, 6, 7].

Помимо этого трудности, обусловленные большим крутящим моментом и силами натяжения, также наблюдаются в подобных скважинах. Бурильная колонна лежит на нижней стенке скважины и имеет большую площадь контакта с породой и обсадной колонной. В таких условиях значительно возрастают силы трения между контактирующими поверхностями. Большое трение инструмента о стенки скважины и (или) обсадной колонны приводит к увеличению вероятности возникновения различных осложнений (прихваты колонны обвалившимися породами, заклинивание колонны в желобной выработке, дифференциальные прихваты) обуславливает повышенный износ бурового оборудования [1, 2, 8].

Для снижения силы трения между бурильной колонной и стенкой скважины в настоящее время чаще всего применяют буровые растворы с улучшенными смазочными свойствами. Улучшение смазочных (триботехнических) свойств буровых растворов, как правило, достигается путем введения в них специальных смазочных добавок [3, 7].

Состав и свойства промывочных жидкостей способны обеспечить более успешный процесс бурения скважин, так, например, при снижении коэффициента трения с 0,34 до 0,2, при зенитных углах от 30 до 90° обеспечивается снижение энергозатрат на трение бурильной колонны об обсадную от 7 до 40%.

Снизить энергоёмкость процесса бурения можно различными способами, так например:

  1. Использование попутного нефтяного газа (ПНГ) для повышения энергоэффективности процессов добычи и подготовки нефти. Позволяет решить две задачи: использовать ПНГ для производства электроэнергии; обеспечить экономию электроэнергии. [4]

  2. Снижение количества затрачиваемых реагентов за счет совершенствования технологий бурения скважин и очистки буровых растворов (снижение энергозатрат на транспорт и хранение материалов для буровых растворов, вывоз и утилизацию отходов бурения)

  3. Снижение трения бурильной колонны о стенки скважины и обсадной колонны за счет использования современных эффективных составов растворов.

Третий путь является минимально затратным с точки зрения проведения исследований и разработок, а также внедрения в производственный процесс, при этом одними из наиболее простых путей являются:

  • использование растворов на углеводородной основе [5];

  • введение смазывающих добавок [2, 36]

Методология

Исследования, проведенные на кафедре бурения скважин показали, что включение в состав промывочных жидкостей смазывающих добавок или замена раствора на углеводородный может привести к снижению коэффициента трения на 35-75%, что приведет к минимизации количества осложнений, связанных с износом труб, уменьшению крутящего момента при вращении колонны, а также увеличению срока службы бурильных и обсадных труб [1, 2].

Методика исследования смазывающей способности раствора складывается из нескольких этапов:

  1. приготовление водного и глинистого (плотностью 1,03 г/см3) растворов (концентрация добавки 1%);

  2. оценка качества приготовления;

  3. определение коэффициента трения на приборе КТК-2;

  4. замер реологических параметров на приборе Fann 35SA;

  5. фильтрация раствора на приборе ВМ-6 для оценки pH фильтрата на приборе Crison GLP 21 и коэффициента трения на границе «металл – глинистая корка» на приборе Fann EP/Lubricity Tester Model 212.

Для оценки оптимальной концентрации вводимых добавок – тот же комплекс исследований с разными концентрациями.

Лабораторные исследования и обсуждение результатов

В настоящее время на рынке представлен значительный ассортимент смазывающих добавок, большинство из которых – зарубежные, поэтому актуальны и экономически целесообразны разработка и исследование новых эффективных реагентов.

Авторами проведено исследование смазочных добавок к буровым растворам (таблица 1).

Таблица 1 – Смазочные добавки к буровым растворам

Реагент

Описание

Особенности приготовления

pH фильтрата раствора

Lubristeel

темно-коричневого цвета со специфическим запахом

Хорошо взаимодействует с водой, раствор приобретает темно-коричневый оттенок. Со временем, на поверхности выделяется маслянистая пленка.

8,83

FRW A

Однородная жидкость темно-коричневого цвета запах специфический

Удовлетворительная диспергируемость, наблюдается осадок на стенках оборудования, иногда образуются частицы крупной фракции. Появляется пленка на поверхности воды.

9,06

FRW B

9,75

FRW

9,61

Lubrital

Однородная жидкость темно-коричневого цвета запах специфический

Хорошо растворяется, равномерная масса, сохраняет устойчивость со временем, почти без выделений осадка.

9,3

PolyMudLiquid

Беловато-мутная гомогенная жидкость

Хорошо взаимодействует с водой, раствор приобретает вязкую (как кисель) структуру с беловатым оттенком. Однородный.

9,57

ASP 820

9,54

Проведено исследование водных и глинистых (на основе бентонита ПБМА плотностью 1,03 г/см3) растворов с концентрацией добавок 1 % (PolyMudLiquid и ASP 820 – концентрацией 0,1 %, так как при концентрации добавки 1 % образуются вязкоупругие составы, определить коэффициент трения и реологические свойства которых не представляется возможным). В таблице приведены характеристики получаемых водных растворов и pH фильтрата глинистых растворов (при pH фильтрата чистого глинистого раствора 9,46).

На рис. 1 показаны результаты исследования смазочной способности, основанной на определении коэффициента трения пары металл – металл в жидкой среде, характеризующей вращение колонны бурильных труб в обсаженном участке ствола скважины, и пары металл – глинистая корка, характеризующей «прилипание» колонны бурильных труб к глинистой корке на стенке скважины.


Рисунок 1 – Коэффициент трения в растворах со смазывающими добавками


Исходя из практики бурения скважин наиболее рационально применение добавок к буровым растворам, позволяющих поддерживать коэффициент трения пары металл – металл в пределах до 0,18–0,20 [7, 8]. Из рис. 1 видно, что смазывающая способность реагента FRW различных модификаций находится в тех же пределах, что и смазывающая способность других применяемых в настоящее время добавок. Глинистые растворы с добавками 0,1 % PolyMudLiquid и ASP 820 обусловливают повышенные значения коэффициента трения пары металл – металл за счет более высокой вязкости получаемого состава, поскольку эти добавки являются комплексными и влияют не только на смазывающие свойства, но и на вязкость раствора.

На рисунке 2 приведён результат замеров вязкости глинистых растворов со смазывающими добавками. На рисунках 3-4 представлены результаты расчета значений пластической вязкости и динамического напряжения сдвига соответственно.


Рисунок 2 – Нормальная вязкость глинистых растворов со смазывающими добавками в момент приготовления



Рисунок 3 – Пластическая вязкость глинистых растворов со смазывающими добавками



Рисунок 4 – Динамическое напряжение сдвига глинистых растворов со смазывающими добавками


Видно, что добавки PolyMudLiquid и, особенно, ASP 820 значительно увеличивают показания пластической вязкости, а последняя – и динамического напряжения сдвига. Увеличение этих показателей приводит к росту гидравлических сопротивлений, что оказывает негативное влияние на гидродинамику процесса бурения скважины.

Рисунок 5 показывает влияние концентрации смазывающих добавок группы FRW на коэффициент трения пары «металл-металл». Видно, что эти добавки позволяют снизить коэффициент трения до 0,12 при концентрации в пределах 1,5-2%, что соответствует относительному снижению коэффициента трения по сравнению с необработанным глинистым раствором на 75%.

Рисунок 5 – Коэффициент трения пары «металл-металл» в глинистом растворе с различной концентрацией FRW


На рисунке 6 представлена зависимость снижения коэффициента трения глинистой корки раствора, обработанного реагентом FRW, и его относительное снижение по сравнению с необработанным раствором. Коэффициент трения корки обработанного глинистого раствора варьируется в пределах 0,1-0,06, при этом относительное снижение коэффициента трения достигает 37%. При увеличении концентрации смазывающей добавки более 2% снижение коэффициента трения корки затухает, что характеризуется уменьшением угла наклона кривой.

На основе анализа полученных данных смазывающая добавка FRW различных модификаций показала результаты, сопоставимые с применяемыми в настоящее время реагентами: снижение коэффициента трения пары «металл – металл» в глинистом растворе составило 70-75%, в водном растворе 70%.

Рисунок 6 – Влияние концентрации смазывающей добавки FRW на коэффициент трения глинистой корки


Выводы и рекомендации

Дальнейшие исследования направлены на оценку смазывающей способности сред на границе трения «металл – горная пород» на образцах кернового материала.

На основе анализа полученных данных смазывающая добавка FRW различных модификаций показала результаты, сопоставимые с применяемыми в настоящее время реагентами: снижение коэффициента трения пары «металл – металл» в глинистом растворе составило 70-75%, в водном растворе 70%.

Тестирование большого количества смазывающих добавок в условиях глинисто-полимерного и безглинистого полимерного буровых растворов показало, что смазочные добавки могут являться активными компонентами раствора, т.е могут заметно влиять на структурно-механические и реологические (в т.ч. тиксотропные) свойства буровых растворов, а также на водоотдачу, что объясняется их адсорбцией на поверхности твердых частиц в растворе. Основной акцент при сопоставлении образцов сделан на первичные свойства – смазывающую способность. Смазочные добавки являются необходимым компонентом промывочного раствора для бурения глубоких и горизонтальных скважин.

Литература

  1. Закиров А.Я. Разработка составов промывочных жидкостей с высокой смазывающей способностью для бурения наклонно направленных и горизонтальных скважин: дисс. … канд. техн. наук. Санкт-Петербург: СПГГУ, 2012.

  2. Мелехин А.А., Чернышов С.Е., Блинов П.А., Нуцкова М.В. Исследование смазывающих добавок к буровым растворам для снижения коэффициента трения при строительстве скважин роторными управляемыми системами // Нефтяное хозяйство. – 2016. – № 10. – С. 52-55.

  3. Мойса Ю.Н., Фролова Н.В., Бармотин К.С. Современные тенденции развития смазочных добавок в бурении. Строительство нефтяных и газовых скважин на суше и на море. – 2007. – № 3. – С. 10–14.

  4. Моренов В.А. Применение попутного нефтяного газа в качестве энергоносителя// Научно-технические ведомости СПбГПУ, 2012. № 154 (2). С. 61-65

  5. Нуцкова М.В., Сидоров Д.А., Тсикплону Д.Э., Сергеев Г.М., Васильев Н.И. Исследования буровых растворов на углеводородной основе для первичного вскрытия продуктивных пластов // Вестник Пермского национального исследовательского политехнического университета. Геология. Нефтегазовое и горное дело. – 2019. – Т. 19. – № 2. – С. 138-149.

  6. Паньков И.Л., Морозов И.А. Изучение влияния коэффициента трения на механические показатели соляных пород при сжатии образцов различной высоты//Вестник Пермского национального исследовательского политехнического университета. Геология. Нефтегазовое и горное дело. – 2013. – № 7. – С. 57–67.

  7. Рязанов Я.А. Энциклопедия по буровым растворам. Оренбург: Летопись, 2005. – 664 с.

  8. Шерстнев Н.М., Расидзе Я.М., Ширинзаде С.А. Предупреждение и ликвидация осложнений в бурении. – М.: Недра, 1979. – 304 с.

Keywords: drilling wells, drilling fluids, energy efficiency



Source: https://oaoo.ru/ptps/snijenie-energoemkosti-stroitelstva-skvajin-pytem-primeneniia-rastvorov-s-ylychshennymi-tribotehnicheskimi-harakteristikami.html

Межтекстовые Отзывы
Посмотреть все комментарии
guest

Арт Кузница

город: Москва Район: Печатники район Адрес: Южнопортовая улица, 21 ст40 Индекс: 115088.0 Телефон: 8‒800‒550‒80‒42 Мобильный Телефон: +7‒929‒680‒33‒87 Сайт:...

Капсстрой

город: Москва Район: Московский поселение Адрес: 22 километр Киевское шоссе, вл4 ст2а Индекс: 108811.0 Телефон: +7 (499) 112‒05‒05...

Порматокс, научно-производственное предприятие

город: Москва Район: Чертаново Северное район Адрес: Кировоградская улица, 3 Индекс: 117587.0 Телефон: nan Мобильный Телефон: nan Сайт:...

Бурение без рисков. Современные методы диагностики и ремонта бурового оборудования

УДК: 620.179 Сегодня, даже несмотря на активное появление инновационных методов добычи углеводородов, бурение остается основным процессом, без которого...

Стамп, торгово-производственная компания

город: Москва Район: Бирюлёво Западное район Адрес: Ступинский проезд, 7 ст2 Индекс: 117546.0 Телефон: +7 (495) 902‒64‒22 Мобильный...

Викос, торгово-сервисная компания

город: Москва Район: Богородское район Адрес: 4-й проезд Подбельского, 3 ст7 Индекс: 107150.0 Телефон: +7 (499) 490‒70‒26 Мобильный...

Интерстилс, склад

город: Москва Район: Можайский район Адрес: улица Верейская, 29 ст152 Индекс: 121471.0 Телефон: +7 (495) 129‒01‒68 Мобильный Телефон:...

Опытный завод, Московский энергетический институт

город: Москва Район: Лефортово район Адрес: Энергетический проезд, 6 Индекс: 111116.0 Телефон: +7 (495) 362‒73‒01 Мобильный Телефон: nan...

Точсталь, компания

город: Москва Район: Лосиноостровский район Адрес: Тайнинская улица, 26 Индекс: 129345.0 Телефон: +7 (495) 204‒29‒50 Мобильный Телефон: nan...

Фс-про

город: Москва Район: Очаково-Матвеевское район Адрес: Рябиновая улица, 47 к3 ст1 Индекс: 121471.0 Телефон: nan Мобильный Телефон: nan...

Superbau, офис

город: Москва Район: Гольяново район Адрес: Щёлковское шоссе, 23а Индекс: 107241.0 Телефон: +7 (495) 134‒23‒30 Мобильный Телефон: nan...

Волекс, торговая компания

город: Москва Район: Южное Медведково район Адрес: Чермянская улица, 1 ст1 Индекс: 127282.0 Телефон: +7 (495) 981‒57‒85 Мобильный...

Бртекс

город: Москва Район: Соколиная Гора район Адрес: улица Буракова, 27 к1 Индекс: 105118.0 Телефон: nan Мобильный Телефон: +7‒993‒915‒82‒47...

Металлснаб

город: Москва Район: Дмитровский район Адрес: Ижорская улица, 15 Индекс: 127644.0 Телефон: +7 (499) 130‒63‒90 Мобильный Телефон: nan...

Voestalpine, компания

город: Москва Район: Беговой район Адрес: улица Правды, 8 к13 Индекс: 125040.0 Телефон: nan Мобильный Телефон: nan Сайт:...

Союзполимет

город: Москва Район: Сокольники район Адрес: 2-й Полевой переулок, 2 к3 Индекс: 107014.0 Телефон: +7 (495) 925‒75‒00 Мобильный...

Уралармопром

город: Москва Район: Мосрентген поселение Адрес: МКАД 43 километр, к8 Индекс: 108820.0 Телефон: +7 (495) 147‒43‒53 Мобильный Телефон:...

Металл-дизайн, торгово-производственная компания

город: Москва Район: Рязанский район Адрес: Стахановская улица, 18 ст1 Индекс: 109428.0 Телефон: +7 (495) 211‒75‒96 Мобильный Телефон:...

ГЗ-лазер

город: Москва Район: Головинский район Адрес: Автомоторная улица, 5Б Индекс: 125438.0 Телефон: nan Мобильный Телефон: nan Сайт: http://www.gz-lazer.com...

Ипос Проект

город: Москва Район: Черёмушки район Адрес: Профсоюзная улица, 57 Индекс: 117420.0 Телефон: +7 (495) 142‒90‒31 Мобильный Телефон: nan...