• Виктор
  • Статьи
  • 7 мин. чтения

Снижение энергоемкости строительства скважин путем применения растворов с улучшенными триботехническими характеристиками

При строительстве наклонно-направленных скважин на пространственно-искривленных участках ствола имеют место большие контактные нагрузки и огромные сопротивления движению бурильной колонны при подъеме. Одно из направлений повышения энергооэффективности бурения таких скважин – снижение трения на границах «металл – металл», «металл – горная порода» и «металл – фильтрационная корка», обеспечить которое можно при использовании буровых растворов с улучшенными триботехническими характеристиками.






Потребление энергии является серьёзным фактором, оказывающим влияние на эксплуатационные расходы на бурение, поскольку на него приходится от 10 до 30% эксплуатационных расходов, поэтому снижение энергозатрат является актуальным направлением исследований и разработок. Особенно это важно при освоении и разработке крупных месторождений, особенно – с трудноизвлекаемыми запасами, к которым относятся проекты бурения скважин с большими отходами от вертикали, в том числе на шельфе Арктики.

При строительстве наклонно направленных скважин, в том числе с горизонтальным окончанием, является одним из направлений повышения нефтеотдачи пласта за счет увеличения зоны дренирования. Данная проблема особенно остро встаёт при бурении с использованием роторных управляемых систем (РУС). Применение РУС подразумевает вращение бурильной колонны по всей её длине, что повышает износ бурового инструмента. А применение смазывающих агентов значительно повышает технико-экономические характеристики данных систем [1-3, 6, 7].

Помимо этого трудности, обусловленные большим крутящим моментом и силами натяжения, также наблюдаются в подобных скважинах. Бурильная колонна лежит на нижней стенке скважины и имеет большую площадь контакта с породой и обсадной колонной. В таких условиях значительно возрастают силы трения между контактирующими поверхностями. Большое трение инструмента о стенки скважины и (или) обсадной колонны приводит к увеличению вероятности возникновения различных осложнений (прихваты колонны обвалившимися породами, заклинивание колонны в желобной выработке, дифференциальные прихваты) обуславливает повышенный износ бурового оборудования [1, 2, 8].

Для снижения силы трения между бурильной колонной и стенкой скважины в настоящее время чаще всего применяют буровые растворы с улучшенными смазочными свойствами. Улучшение смазочных (триботехнических) свойств буровых растворов, как правило, достигается путем введения в них специальных смазочных добавок [3, 7].

Состав и свойства промывочных жидкостей способны обеспечить более успешный процесс бурения скважин, так, например, при снижении коэффициента трения с 0,34 до 0,2, при зенитных углах от 30 до 90° обеспечивается снижение энергозатрат на трение бурильной колонны об обсадную от 7 до 40%.

Снизить энергоёмкость процесса бурения можно различными способами, так например:

  1. Использование попутного нефтяного газа (ПНГ) для повышения энергоэффективности процессов добычи и подготовки нефти. Позволяет решить две задачи: использовать ПНГ для производства электроэнергии; обеспечить экономию электроэнергии. [4]

  2. Снижение количества затрачиваемых реагентов за счет совершенствования технологий бурения скважин и очистки буровых растворов (снижение энергозатрат на транспорт и хранение материалов для буровых растворов, вывоз и утилизацию отходов бурения)

  3. Снижение трения бурильной колонны о стенки скважины и обсадной колонны за счет использования современных эффективных составов растворов.

Третий путь является минимально затратным с точки зрения проведения исследований и разработок, а также внедрения в производственный процесс, при этом одними из наиболее простых путей являются:

  • использование растворов на углеводородной основе [5];

  • введение смазывающих добавок [2, 36]

Методология

Исследования, проведенные на кафедре бурения скважин показали, что включение в состав промывочных жидкостей смазывающих добавок или замена раствора на углеводородный может привести к снижению коэффициента трения на 35-75%, что приведет к минимизации количества осложнений, связанных с износом труб, уменьшению крутящего момента при вращении колонны, а также увеличению срока службы бурильных и обсадных труб [1, 2].

Методика исследования смазывающей способности раствора складывается из нескольких этапов:

  1. приготовление водного и глинистого (плотностью 1,03 г/см3) растворов (концентрация добавки 1%);

  2. оценка качества приготовления;

  3. определение коэффициента трения на приборе КТК-2;

  4. замер реологических параметров на приборе Fann 35SA;

  5. фильтрация раствора на приборе ВМ-6 для оценки pH фильтрата на приборе Crison GLP 21 и коэффициента трения на границе «металл – глинистая корка» на приборе Fann EP/Lubricity Tester Model 212.

Для оценки оптимальной концентрации вводимых добавок – тот же комплекс исследований с разными концентрациями.

Лабораторные исследования и обсуждение результатов

В настоящее время на рынке представлен значительный ассортимент смазывающих добавок, большинство из которых – зарубежные, поэтому актуальны и экономически целесообразны разработка и исследование новых эффективных реагентов.

Авторами проведено исследование смазочных добавок к буровым растворам (таблица 1).

Таблица 1 – Смазочные добавки к буровым растворам

Реагент

Описание

Особенности приготовления

pH фильтрата раствора

Lubristeel

темно-коричневого цвета со специфическим запахом

Хорошо взаимодействует с водой, раствор приобретает темно-коричневый оттенок. Со временем, на поверхности выделяется маслянистая пленка.

8,83

FRW A

Однородная жидкость темно-коричневого цвета запах специфический

Удовлетворительная диспергируемость, наблюдается осадок на стенках оборудования, иногда образуются частицы крупной фракции. Появляется пленка на поверхности воды.

9,06

FRW B

9,75

FRW

9,61

Lubrital

Однородная жидкость темно-коричневого цвета запах специфический

Хорошо растворяется, равномерная масса, сохраняет устойчивость со временем, почти без выделений осадка.

9,3

PolyMudLiquid

Беловато-мутная гомогенная жидкость

Хорошо взаимодействует с водой, раствор приобретает вязкую (как кисель) структуру с беловатым оттенком. Однородный.

9,57

ASP 820

9,54

Проведено исследование водных и глинистых (на основе бентонита ПБМА плотностью 1,03 г/см3) растворов с концентрацией добавок 1 % (PolyMudLiquid и ASP 820 – концентрацией 0,1 %, так как при концентрации добавки 1 % образуются вязкоупругие составы, определить коэффициент трения и реологические свойства которых не представляется возможным). В таблице приведены характеристики получаемых водных растворов и pH фильтрата глинистых растворов (при pH фильтрата чистого глинистого раствора 9,46).

На рис. 1 показаны результаты исследования смазочной способности, основанной на определении коэффициента трения пары металл – металл в жидкой среде, характеризующей вращение колонны бурильных труб в обсаженном участке ствола скважины, и пары металл – глинистая корка, характеризующей «прилипание» колонны бурильных труб к глинистой корке на стенке скважины.


Рисунок 1 – Коэффициент трения в растворах со смазывающими добавками


Исходя из практики бурения скважин наиболее рационально применение добавок к буровым растворам, позволяющих поддерживать коэффициент трения пары металл – металл в пределах до 0,18–0,20 [7, 8]. Из рис. 1 видно, что смазывающая способность реагента FRW различных модификаций находится в тех же пределах, что и смазывающая способность других применяемых в настоящее время добавок. Глинистые растворы с добавками 0,1 % PolyMudLiquid и ASP 820 обусловливают повышенные значения коэффициента трения пары металл – металл за счет более высокой вязкости получаемого состава, поскольку эти добавки являются комплексными и влияют не только на смазывающие свойства, но и на вязкость раствора.

На рисунке 2 приведён результат замеров вязкости глинистых растворов со смазывающими добавками. На рисунках 3-4 представлены результаты расчета значений пластической вязкости и динамического напряжения сдвига соответственно.


Рисунок 2 – Нормальная вязкость глинистых растворов со смазывающими добавками в момент приготовления



Рисунок 3 – Пластическая вязкость глинистых растворов со смазывающими добавками



Рисунок 4 – Динамическое напряжение сдвига глинистых растворов со смазывающими добавками


Видно, что добавки PolyMudLiquid и, особенно, ASP 820 значительно увеличивают показания пластической вязкости, а последняя – и динамического напряжения сдвига. Увеличение этих показателей приводит к росту гидравлических сопротивлений, что оказывает негативное влияние на гидродинамику процесса бурения скважины.

Рисунок 5 показывает влияние концентрации смазывающих добавок группы FRW на коэффициент трения пары «металл-металл». Видно, что эти добавки позволяют снизить коэффициент трения до 0,12 при концентрации в пределах 1,5-2%, что соответствует относительному снижению коэффициента трения по сравнению с необработанным глинистым раствором на 75%.

Рисунок 5 – Коэффициент трения пары «металл-металл» в глинистом растворе с различной концентрацией FRW


На рисунке 6 представлена зависимость снижения коэффициента трения глинистой корки раствора, обработанного реагентом FRW, и его относительное снижение по сравнению с необработанным раствором. Коэффициент трения корки обработанного глинистого раствора варьируется в пределах 0,1-0,06, при этом относительное снижение коэффициента трения достигает 37%. При увеличении концентрации смазывающей добавки более 2% снижение коэффициента трения корки затухает, что характеризуется уменьшением угла наклона кривой.

На основе анализа полученных данных смазывающая добавка FRW различных модификаций показала результаты, сопоставимые с применяемыми в настоящее время реагентами: снижение коэффициента трения пары «металл – металл» в глинистом растворе составило 70-75%, в водном растворе 70%.

Рисунок 6 – Влияние концентрации смазывающей добавки FRW на коэффициент трения глинистой корки


Выводы и рекомендации

Дальнейшие исследования направлены на оценку смазывающей способности сред на границе трения «металл – горная пород» на образцах кернового материала.

На основе анализа полученных данных смазывающая добавка FRW различных модификаций показала результаты, сопоставимые с применяемыми в настоящее время реагентами: снижение коэффициента трения пары «металл – металл» в глинистом растворе составило 70-75%, в водном растворе 70%.

Тестирование большого количества смазывающих добавок в условиях глинисто-полимерного и безглинистого полимерного буровых растворов показало, что смазочные добавки могут являться активными компонентами раствора, т.е могут заметно влиять на структурно-механические и реологические (в т.ч. тиксотропные) свойства буровых растворов, а также на водоотдачу, что объясняется их адсорбцией на поверхности твердых частиц в растворе. Основной акцент при сопоставлении образцов сделан на первичные свойства – смазывающую способность. Смазочные добавки являются необходимым компонентом промывочного раствора для бурения глубоких и горизонтальных скважин.

Литература

  1. Закиров А.Я. Разработка составов промывочных жидкостей с высокой смазывающей способностью для бурения наклонно направленных и горизонтальных скважин: дисс. … канд. техн. наук. Санкт-Петербург: СПГГУ, 2012.

  2. Мелехин А.А., Чернышов С.Е., Блинов П.А., Нуцкова М.В. Исследование смазывающих добавок к буровым растворам для снижения коэффициента трения при строительстве скважин роторными управляемыми системами // Нефтяное хозяйство. – 2016. – № 10. – С. 52-55.

  3. Мойса Ю.Н., Фролова Н.В., Бармотин К.С. Современные тенденции развития смазочных добавок в бурении. Строительство нефтяных и газовых скважин на суше и на море. – 2007. – № 3. – С. 10–14.

  4. Моренов В.А. Применение попутного нефтяного газа в качестве энергоносителя// Научно-технические ведомости СПбГПУ, 2012. № 154 (2). С. 61-65

  5. Нуцкова М.В., Сидоров Д.А., Тсикплону Д.Э., Сергеев Г.М., Васильев Н.И. Исследования буровых растворов на углеводородной основе для первичного вскрытия продуктивных пластов // Вестник Пермского национального исследовательского политехнического университета. Геология. Нефтегазовое и горное дело. – 2019. – Т. 19. – № 2. – С. 138-149.

  6. Паньков И.Л., Морозов И.А. Изучение влияния коэффициента трения на механические показатели соляных пород при сжатии образцов различной высоты//Вестник Пермского национального исследовательского политехнического университета. Геология. Нефтегазовое и горное дело. – 2013. – № 7. – С. 57–67.

  7. Рязанов Я.А. Энциклопедия по буровым растворам. Оренбург: Летопись, 2005. – 664 с.

  8. Шерстнев Н.М., Расидзе Я.М., Ширинзаде С.А. Предупреждение и ликвидация осложнений в бурении. – М.: Недра, 1979. – 304 с.

Keywords: drilling wells, drilling fluids, energy efficiency



Source: https://oaoo.ru/ptps/snijenie-energoemkosti-stroitelstva-skvajin-pytem-primeneniia-rastvorov-s-ylychshennymi-tribotehnicheskimi-harakteristikami.html

Межтекстовые Отзывы
Посмотреть все комментарии
guest

Технология периодической работы добывающих и нагнетательных скважин в противофазе

УДК: 550.38 Программа внедрения технологии циклической закачки воды с периодической эксплуатацией добывающих скважин в противофазе. Технология периодической работы...

Архитектура подводных нефтегазодобывающих сооружений

УДК: 622.276.04 В данной работе представлены основные проектные положения, необходимые для освоения глубоководного нефтегазового месторождения. Отображена совокупность архитектурных...

Буровые бригады ССК снова лучшие

УДК: 622 Буровые бригады Нефтеюганского филиала АО «Сибирская Сервисная Компания» заняли три призовых места по итогам конкурса «Лучшая...

На Коммунаровском руднике в Хакасии завершена модернизация золотоизвлекательной фабрики

 © avatars.dzeninfra.ru На Коммунаровском руднике в Хакасии была завершена модернизация золотоизвлекательной фабрики. Ранее производительность ЗИФ составляла 1 млн тонн руды в год,...

Методы проведения ингибирования погружного скважинного оборудования

УДК: 622.276 Практика борьбы с коррозией, асфальтосмолопарафиновыми отложениями, выпадениями солей и появление механических примесей показывает, что наиболее эффективным...

Азотные компрессорные установки для повышения энергоэффективности добычи: методы снижения затрат при эксплуатации скважин

УДК: 621.51 Предприятия топливно-энергетического комплекса относятся к стратегическим объектам высоких классов опасности. Предупреждение нештатных ситуаций, связанных с возгоранием,...

Новая производственная линия заработала на фабрике Маломырского рудника в Амурской области

 © www.amurobl.ru Золотодобывающее предприятие расположено в Селемджинском районе, в 40 км от посёлка Стойба. Маломырское месторождение содержит преимущественно упорные руды, содержание в которых драгоценного...

Глобальный рост или локальная подстройка? Какие пути выбирают российские нефтесервисные компании в новых условиях

Для российского нефтесервиса настали золотые времена? Формально это действительно так, глобальные конкуренты покинули рынок, а заказчики и проекты...

Генераторы сейсмических колебаний невзрывного типа использующие в качестве энергоносителя бензин-кислородные смеси, обогащенные водородом

УДК: 550.834 Геофизическая разведка месторождений углеводородов занимает важное место в деятельности нефтесервисных компаний. На долю геофизической разведки углеводородов...

Крепление скважин в криолитозоне. Разработка тампонажного камня с повышенными прочностными характеристиками

УДК: 622.24 В статье представлены результаты разработки тампонажного раствора-камня для крепления скважин в зоне распространения мерзлых пород. Анализ...

ЮГК запустили производство золота на ГОКе «Высокое»

 © tass.ru «Южуралзолото ГК» (ЮГК) начала производство золота на горно-обогатительном комбинате (ГОК) «Высокое» в Красноярском крае. До конца года ЮГК планирует произвести на...

Ресурсосберегающая технология сбора, подготовки и закачивания пластовой воды

УДК: 622.692 В статье рассмотрены вопросы ресурсосбережения и повышения эксплуатационной надёжности технологического процесса сбора, подготовки и закачивания пластовой...

Янтарный комбинат поставил первую партию сырья по новому контракту с янтарным кластером

Калининградский янтарный комбинат выполнил первую отгрузку по новому контракту с янтарным кластером.  © rostec.ru Соглашение с Ассоциацией «Кластер янтарной промышленности Калининградской области»...

Диверсификация научно-технического развития и управления эффективностью предприятий ТЭК в нестабильной макроэкономической среде: особенности и проблемы

УДК: 622.24: 624 В современных условиях предприятия топливно-энергетического комплекса столкнулись с серьезными сложностями как в области обеспечения важнейшими...

Максимальные показатели в условиях нестабильности: «НафтаГаз» объявляет 2023 годом эффективности

УДК: 622.7-9 В условиях отсутствия доступа к европейскому оборудованию и технологиям российский нефтесервис продолжает ставить производственные рекорды и...

Циклическое нагнетание парокатализатора на кубинском месторождении сверхтяжелой нефти

УДК: 622.246 В статье описывается инновационный метод циклического нагнетания парокатализатора в пласт М (сверхтяжелая нефть) месторождения Бока-де-Харуко на...

Явление сверхвязкости в водомасляных эмульсиях

УДК: 678:532.7:621 Обнаружен неизвестный ранее эффект значительного увеличения динамической вязкости и термической стабильности водомасляных эмульсий, полученных в присутствии...

Сибирская Сервисная Компания установила новый отраслевой рекорд суточной проходки

На кустовой площадке № 484 южной части Приобского месторождения (заказчик – ООО «Газпромнефть-Хантос») установлен новый отраслевой рекорд суточной...

Расширяя сервисные компетенции

УДК: 622.276.05 В мае 2023 года ТМК Нефтегазсервис (ТМК НГС), входящей в ТМК, исполнилось 15 лет. Все эти...

Классификация МНГС по функциональному назначению верхнего строения

УДК: 629.563 В статье приводится анализ существующих классификаций морских нефтегазопромысловых сооружений, определяются основные направления для совершенствования. На основании...