• Виктор
  • Статьи
  • 11 мин. чтения

Скважины Бованенковского. Исследование возможности использования тампонажной смеси ГранЦЕМ-7 для крепления кондукторов, направлений и промежуточных колонн скважин

В статье приведены результаты исследования основных характеристик тампонажных растворов, используемых сегодня для крепления кондукторов, направлений и промежуточных колонн скважин Бованенковского нефтегазоконденсатного месторождения, на основе цементных смесей ЦТРО и ЦТРС, а также возможность их замещения единой смесью ГранЦЕМ-7 для снижения совокупных издержек при цементировании обсадных колонн на всех уровнях строительства скважин в соответствии с заявленными условиями.






В развитии нефтяной и газовой промышленности одной из основных задач является обеспечение высокого качества строительства скважин, которое зависит от многих природных и технико-технологических факторов.

Одним из значимых факторов обеспечения качественного строительства скважин является создание надежной крепи, которая, являясь сооружением капитального строительства с продолжительным сроком эксплуатации, отвечала бы требованиям применительно к конкретным условиям и исключала бы возникновение возможных осложнений строительства и эксплуатации скважин. Повышение качества крепления скважин является одной из значимых задач при цементировании обсадных колонн Бованенковского месторождения.

На основании производственного задания были изучены образцы используемых тампонажных растворов, на основе цементных смесей ЦТРО и ЦТРС, для крепления кондукторов, направлений и промежуточных колонн, а также возможность их замещения единой смесью ГранЦЕМ-7 [1] для снижения совокупных издержек при цементировании обсадных колонн на всех уровнях строительства скважин Бованенковского нефтегазоконденсатного месторождения в соответствии с заявленными условиями.

Испытания тампонажных растворов проводились в соответствии с техническими условиями, рекомендациями [2] и РД 39-00147001-767-2000[3].

В качестве жидкости затворения были использованы растворы хлористого кальция и хлористого натрия. Основные технологические свойства раствора состава 1,0 ГранЦЕМ-7+ 0,43 pCaCl2 (1015 кг/м3) и 1,0 ГранЦЕМ-7+ 0,43 pNaCl2 (1030 кг/м3) приведены в таблице 1.

ТАБЛИЦА 1

Состав раствора

Тепература,C

Водоотделение, мл

Плотность, кг.м3

Растекаемость, мм

Сроки схватывания, ч-мин

Время загустевания до 30Вс, мин

Прочность, 2 сут., МПа

Теплопроводность, ƛ, Вт/(м*К)

Нач.

Оконч.

изгиб

сжатие

Сцеплен

1,0 ГранЦЕМ-7+ 0,43 pCaCl2
(1015 кг/м3)

20

0

1710

230

430

465

180

5,0

20,0

1,2

0,50

1,0 ГранЦЕМ-7+ 0,43 pNaCl2
(1030 кг/м3)

20

0

1730

270

150

Тампонажный раствор состава 1,0 ГранЦЕМ-7+ 0,43 pCaCl2 (1015 кг/м3) имеет оптимальные показатели растекаемости и времени загустевания, а также значения прочности на сжатие (по прессу), превосходящие аналогичные показатели тампонажных растворов нормальной плотности 1820 кг/м3). Для проведения испытаний были приняты условия, максимально приближенные к термобарическим условиям Бованенковского месторождения: температура 20˚C, давление 7,0 Мпа.

На рисунке 1 видно, что скорость набора прочности по ультразвуковому анализатору состава ГранЦЕМ-7 постоянна, достаточно высока в течение всей продолжительности теста и по истечении 13 часов превосходит используемые смеси на основе ЦТРО и ЦТРС.

РИС. 1. Изменение прочности камня тампонажных растворов на основе ГранЦЕМ-7, ЦТРО и ЦТРС во времени (при температуре 20C и давлении 7,0 МПа)

Кривая набора СНС по данным ультразвукового анализатора приведена на рисунке 2. Критический период гидратации тампонажного раствора (время набора СНС от 47,9 до 234,9Па) составил 67 минут, что является приемлемой величиной для пластов ММП, содержащих газогидратные отложения, превосходящей аналогичные показатели тампонажных растворов нормальной плотности и облегченных тампонажных растворов на базе ЦТРО и ЦТРС.

РИС. 2. Изменение СНС тампонажных растворов на основе ГранЦЕМ-7, ЦТРО и ЦТРС во времени (при температуре 20C и давлении 7,0 МПа)

В российских климатических условиях очень важным является успешное проведение цементирования колоны в районах с вечномерзлыми грунтами. С условиями вечной мерзлоты связан целый ряд проблем, включающий в себя расширение ствола скважины из-за тепла, выделяющегося цементным раствором при гидратации, его замедленное твердение и набор прочности, воздействие на затвердевший цементный камень знакопеременных нагрузок. С целью изучения возможности применения тампонажного раствора на основе цементной смеси ГранЦЕМ в условиях Бованенковского месторождения, где температура в стволе скважины может варьировать от -5˚С до +35˚С, а толщина ММП может достигать 400 метров, было проведено исследование влияния условий твердения на значения прочности на сжатие тампонажного камня состава 1,0 ГранЦЕМ-7+0,43 pCaCL2 (1015 кг/м3) в широком диапазоне температур от минус 5˚C до плюс 20˚C (рисунок 4) [4].

РИС. 3. Прочность на сжатие тампонажного камня состава 1,0 ГранЦЕМ-7 +0,43 p CaCl2 (1015 кг/м3) при различных температурах через 48 ч твердения

Согласно полученным данным, можно заключить, что полученный раствор является достаточно устойчивыми к циклическому воздействию знакопеременных температур, что проявляется в наборе прочности тампонажного камня на протяжении трех циклов, а гидравлической активности компонентов ГранЦЕМ-7 достаточно для формирования прочного камня как в условиях забойной, так и в условиях устьевой пачки при креплении кондукторов, направлений и технических колонн в интервалах размещения ММП.

Для сокращения времени загустевания и сроков схватывания, т.е. увеличения скорости гидратации вяжущего в начальный период необходимо включение в формируемый раствор ускорителя, однако стоит отметить, что на более поздних стадиях гидратации и формирования камня показатели систем нивелируются. В случае использования ГранЦЕМ-7 для крепления обсадных колонн в условиях более высоких температур (до 35C) и давлений (от 10Мпа до 20 Мпа) целесообразно применение более «мягкого» ускорителя – хлористого натрия в составе жидкости затворения.

Основные технологические свойства состава 1,0 ГранЦЕМ-7+ 0,43 p CaCl2 (1015 кг/м3) приведены в таблице 1.

Раствор характеризуется высокой растекаемостью, приемлемым значением времени загустевания при температуре 20C, высокими значениями на сжатие и изгиб превосходящим аналогичные показатели тампонажных растворов нормальной плотности 1820 кг/м3. Как и в случае формирования составов, содержащих хлористый кальций, система характеризуется достаточно высокой скоростью набора прочности за короткий период, кривая не имеет тенденций к выходу на плато.

Термобарические условия Бованенковского месторождения являются оптимальными для образования природных газовых гидратов, геотермический градиент в мерзлой толще составляет 2,6°С/100 м, в подмерзлотном разрезе – 3,5°С/100 м. Газопроявления могут возникать на всем протяжении строительства скважины. С целью предупреждения подобных осложнений при строительстве скважины целесообразно применение газоблокаторов.

Совместимость цементной тампонажной смеси ГранЦЕМ-7 с добавками для контроля водоотдачи и газоблокаторами проверялась на примере реагентов Натросол 250 EXR, ПАЦ низкой степени полимеризации и сополимерами поливинилацетата (ПВА).

Ввиду низкого водоцементного соотношения, необходимого для выхода на плотность 1700 кг/м3, количество воды, идущей на гидратацию и подвижность тампонажного раствора, минимально. Соответственно, ввод добавок для контроля водоотдачи, повышающих вязкость жидкости затворения (ПАЦ, Натросол 250 EXR), неизбежно приводит к снижению растекаемости и ухудшению технологических характеристик системы по прокачиваемости (таблица 2).

ТАБЛИЦА 2

Состав раствора

Тепература,C

Водоотделение, мл

Плотность, кг.м3

Растекаемость, мм

Сроки схватывания, ч-мин

Время загустевания до 30Вс, мин

Прочность, 2 сут., МПа

Нач.

Оконч.

изгиб

сжатие

Сцеплен

1,0 ГранЦЕМ-7+ 0.3% Натросол 250 EXR+ +0.45 pCaCl2 (1015 кг/м3)

20

0

1680

200

360

405

288

4,5

19,5

1,0 ГранЦЕМ-7+ 0,3% ПАЦ +0,43 в

20

0

1700

210

520

580

280

4,3

18,2

1,0 ГранЦЕМ-7+0,25% ПВА+0,43 pCaCl2 (1015 кг/м3)

20

0

1710

188

425

449

237

5,2

22,0

После введения в систему состава «1,0 ГранЦЕМ +0,43 в» минимального количества ПАЦ – 0,3%, растекаемость сокращается от 280 до 210 мм. При этом показатель фильтрации уменьшается не столь существенно – от 300 (без ПАЦ) до 180 мл (0,3% ПАЦ). В случае добавления Натросол 250 EXR, тампонажный раствор состава 1,0 ГранЦЕМ-7+ 0.3% Натросол 250 EXR+ +0.45 p CaCl2 (1015 кг/м3) представляет собой вязкую непрокачиваемую пасту.

Газоблокатор другого типа, снижающий проницаемость фильтрационной корки и не влияющий на вязкость жидкости затворения (ПВА), более эффективно работает в системе с пониженным водоцементным соотношением.

Так, тампонажный раствор состава 1,0 ГранЦЕМ-7+0,25% ПВА+0,43 p CaCl2 (1015 кг/м3) характеризуется достаточно низкой начальной консистенцией по сравнению с составами с Натросол 250 EXR (1,0 ГранЦЕМ-7+ 0.3% Натросол 250 EXR+ +0.45 p CaCl2 (1015 кг/м3) и без добавок (1,0 ГранЦЕМ-7+ 0,43 p CaCl2 (1015 кг/м3) (рисунок 4).

РИС. 4. Изменение консистенции во времени тампонажных растворов различных составов на основе сухой смеси ГранЦЕМ-7 при температуре 20C и давлении 7,0 МПа (время выхода на режим – 30 мин)

Скорость набора прочности тампонажного камня состава 1,0 ГранЦЕМ-7+0,25% ПВА+0,43 p CaCl2 (1015 кг/м3) значительно превосходит аналогичные характеристики составов без газоблокатора и с добавкой Натросол 250 EXR (рисунок 5), что проявляется в увеличении угла наклона кривой прочности на сжатие с течением времени.

РИС. 5. Изменение прочности камня во времени тампонажных растворов различных составов на основе сухой смеси ГранЦЕМ-7 при температуре 20C и давлении 7,0 МПа (время выхода на режим – 30 мин)

Аналогичная тенденция проявляется при наблюдении роста СНС – критический период гидратации тампонажного раствора с добавкой ПВА значительно короче по сравнению с составом, содержащим Натросол 250 EXR (рисунок 6).

РИС. 6. Изменение СНС во времени тампонажных растворов различных составов на основе сухой смеси ГранЦЕМ-7 при температуре 20C и давлении 7,0 МПа (время выхода на режим – 30 мин)

Таким образом, можно сделать вывод, что сухая тампонажная смесь ГранЦЕМ-7 позволяет приготавливать тампонажные растворы с улучшенными технологическими характеристиками (высокие значения прочности на сжатие и изгиб, растекаемость, короткий критический период гидратации, низкая теплопроводность) по сравнению с используемыми в настоящее время составами на основе ЦТРО и ЦТРС для крепления кондукторов, направлений и промежуточных колонн. Формируемый ГранЦЕМ-7 тампонажный камень характеризуется приемлемыми значениями прочности на сжатие в широком температурном диапазоне – от минус 5C до 30C. Ввиду низкого водоцементного соотношения, использование водорастворимых добавок для контроля водоотдачи, работающих по принципу увеличения вязкости жидкости затворения, несколько затруднено и приводит к повышению реологических характеристик получаемого раствора.

Для увеличения устойчивости к газопроявлениям тампонажного камня на основе ГранЦЕМ-7 рекомендуется использовать добавки другого типа, снижающие проницаемость фильтрационной корки и не увеличивающие вязкость жидкости затворения (типа ПВА), а также, благодаря подобранным технологическим характеристикам, позволит оптимизировать технологию цементирования обсадных колонн в интервалах ММП за счет применения тампонажного раствора с одной пониженной плотностью по всему интервалу.

Получаемый раствор рекомендован к использованию для крепления кондукторов, направлений и промежуточных колонн в качестве замены используемых тампонажных растворов на основе цементных смесей ЦТРО и ЦТРС на Бованенковском и других месторождениях.

Литература:

  1. Цементная тампонажная смесь «ГранЦЕМ-7». Технические условия [Текст]: ТУ 5734-004-74364232-2005: утв. ЗАО «Гранула»: введ. в действие с 2010. – г. Екатеринбург: ЗАО «Гранула», 2010. – 9 листов.

  2. Прибор ПР-50 для определения расширения тампонажного раствора и камня. Технические условия [Текст]: ТУ 4318-066-00158758-2005: утв. ООО «ТюменНИИгапрогаз», 2005. – 9 листов.

  3. Инструкция по креплению нефтяных и газовых скважин [Текст]: РД 39-00147001-767-2000: утв. ОАО «Газпром» 25.07.2000: введ. в действие с 01.08.2000. – Москва-Краснодар: ООО «Просвещение ЮГ», 2000. – 277 с.

  4. Гриценко А.И Методика испытания тампонажных материалов при пониженных температурах. – М.:ВНИИИГАЗ, 1980.

Факты:

  • Бованенковское нефтегазоконденсатное месторождение — гигантское газовое месторождение на полуострове Ямал, в 40 км от побережья Карского моря, в нижнем течении рек Сё-Яха, Мордыяха и Надуй-Яха
  • 140 млрд м³ газа в год проектная мощность Бованенковского месторождения
  • 4,9 трлн м³ природного газа составляют запасы месторождения по категориям А,В,С1+С2
  • 2,5 грамма на кубический метр составляет среднее содержание конденсата в пластовом газе
  • В 1971 году открыто Бованенковское месторождение
  • В 2014 году был введён в строй газовый промысел №1
  • До +35˚С достигает температура в стволе скважины
  • Термобарические условия Бованенковского месторождения являются оптимальными для образования природных газовых гидратов, геотермический градиент в мерзлой толще составляет 2,6°С/100 м, в подмерзлотном разрезе – 3,5°С/100 м
  • 90 млрд м3 газа в год суммарная проектная производительность двух добычных промыслов, работающих на Бованенковском месторождении


Source: https://oaoo.ru/ptps/skvajiny-bovanenkovskogo-issledovanie-vozmojnosti-ispolzovaniia-tamponajnoi-smesi-grancem-7-dlia-krepleniia-kondyktorov-napravlenii-i-promejytochnyh-kolonn-skvajin.html

Межтекстовые Отзывы
Посмотреть все комментарии
guest

Нормализация паронагнетательных скважин подземно-поверхностной системы термошахтной разработки

УДК: 622 В статье рассмотрены основные технологии нормализации забоев добывающих и нагнетательных скважин. Представлена основная технология очистки забоев...

Методика определения параметров щадящего глушения после МГРП

УДК: 622.245 В данной работе проанализирован отечественный и международный опыт заканчивания скважин после многостадийного гидроразрыва пласта, рассмотрены основные...

Тепловое воздействие

В статье представлены основные результаты проведения работ по испытанию модернизированной одногоризонтной системы в уклоне «Северный» на участке ОПУ-3бис....

«Полиметалл» за год увеличил производство золота на 10%

 © gold.1prime.ru Вторая по добыче золота компания в России АО «Полиметалл» сообщила об увеличении производства золота до 31,3 тонны (+10% к 2022 году). В течение 2023...

Повышение нефтеотдачи

УДК: 622.276 В статье представлены способы повышения нефтеотдачи пластов, анализ достоинств и недостатков с точки зрения соблюдения экологических...

Гидроразрыв пласта. Анализ применяемых конструкций якорящих узлов, используемых при проведении ГРП

УДК: 622.2 Опыт применения пакеров при испытании пластов показал, что в большинстве случаев пакерующие элементы становятся неработоспособными из-за...

Горно-металлургический комбинат «Удокан» выпустил первый медный концентрат

 © cdnstatic.rg.ru В Забайкальском крае 11 сентября запущено оборудование обогатительной фабрики горно-металлургического комбината «Удокан». В результате на предприятии получили первый медный концентрат....

Особенности глушения добывающих скважин в условиях аномально низких пластовых давлений

УДК: 622.276 В данной статье описаны основные особенности борьбы с аномально низкими пластовыми давлениями при глушении добывающих скважин,...

Пути совершенствования регулирования сервисного обслуживания нефтегазовой отрасли России

УДК: 338.45 Развитие в крупных масштабах нефтяной и газовой отраслей углеводородных стран многие годы шло параллельно с созданием...

Сверхсложные технологии: скважина 380

Особенности геологического строения Восточно-Мессояхского месторождения заставили специалистов искать новые подходы к способам добычи: от нестандартных конструктивных особенностей скважины...

Ремонт скважин: конкурентоспособный сервис

С момента основания АО «ССК» работы по ремонту скважин осуществлялись Нефтеюганским филиалом компании. В 2017 году филиал «Ремонт...

Мониторинг профиля притока горизонтальных скважин: практические примеры повышения эффективности выработки запасов

УДК: 550.8; 622.276 Создание эффективной системы разработки месторождений углеводородов в условиях ухудшающейся структуры запасов требует применения инновационных технологических...

Завершена модернизация Яковлевского ГОКа

 © metalinfo.ru Яковлевский ГОК в Белгородской области (входит в «Северсталь») в 4 квартале 2023 года провёл модернизацию за 230 млн рублей. Завершены...

«ФосАгро» запустила новый горизонт рудника в Мурманской области за 36 млрд рублей

 © www.phosagro.ru В Кировском филиале АО «Апатит» (Группа «ФосАгро») состоялся ввод в эксплуатацию добычного горизонта +10 метров Кировского рудника. Реализация проекта развития...

Минишахты

УДК: 622.276 В статье описаны технические требования, которыми должна обладать конструкция подземных скважин, для обеспечения запланированных технологических показателей....

ЮГК запустили производство золота на ГОКе «Высокое»

 © tass.ru «Южуралзолото ГК» (ЮГК) начала производство золота на горно-обогатительном комбинате (ГОК) «Высокое» в Красноярском крае. До конца года ЮГК планирует произвести на...

Лебединский ГОК наращивает мощности по выпуску железорудного концентрата

 © www.metalloinvest.com Компания «Металлоинвест» инвестировала 2 млрд рублей с НДС в модернизацию 9-й технологической секции обогатительной фабрики Лебединского горно-обогатительного комбината. ЛГОК...

В Макеевке ДНР ввели новую линию очистного забоя шахты «Горняк-95»

 © dan-news.ru Лаву ООО «Горняк-95» торжественно ввели в эксплуатацию на угледобывающем предприятии в Макеевке. Планируемая среднесуточная нагрузка очистного забоя составит 150 тонн высококачественного...

Методы искусственного воздействия на пласт

Методы искусственного воздействия на пласт применяются при добыче нефти и углеводородов из-под земной поверхности. В них заключается совокупность...

Группа НЛМК модернизировала обогатительное оборудование на Стойленском ГОКе

 © nlmk.com Группа НЛМК реализовала модернизацию обогатительного оборудования на Стойленском ГОКе. На двух из четырех секций обогатительной фабрики заменены по две шаровые мельницы,...